ET-HP™ (formerly ET) Anchoring Adhesive

ET-HP[™] is a two-component, high solids, epoxy-based system for use as a high-strength, non-shrink anchor grouting material. Resin and hardener are dispensed and mixed simultaneously through the mixing nozzle. ET-HP meets the ASTM C-881 specifications for Type I, II, IV and V, Grade 3, Classes B and C, except gel time.

- **USES:** Threaded rod anchoring
 - Rebar doweling
 - Bonding hardened concrete to hardened concrete
 - · Pick-proof sealant around doors, windows and fixtures
 - · Paste-over for crack injection

CODES: ICC-ES ER-4945 (URM); City of L.A. RR25185, RR25120; Multiple DOT Listings.

The load tables list values based upon results from the most recent testing and may not reflect those in current code reports. Where code jurisdictions apply, consult the current reports for applicable load values.

APPLICATION: Surfaces to receive epoxy must be clean. For installations in or through standing water, see page 225 for details. The base material temperature must be 40°F or above at the time of installation. For best results, material should be 70°F - 80°F at the time of application. Cartridges should not be immersed in water to facilitate warming. To warm cold material, the cartridges should be stored in a warm, uniformly heated area or storage container for a sufficient time to allow epoxy to warm completely. Mixed material in nozzle can harden in 5–7 minutes at a temperature of 40°F or above.

INSTALLATION: See pages 70-71

SHELF LIFE: 24 months from date of manufacture in unopened container

STORAGE CONDITIONS: For best results store between 45°F - 90°F. To store partially used cartridges, leave hardened nozzle in place. To re-use, attach new nozzle.

COLOR: Resin – white, hardener – black. When properly mixed, ET-HP adhesive will be a uniform medium gray color.

CLEAN UP: Uncured material — Wipe up with cotton cloths. If desired scrub area with abrasive, waterbased cleaner and flush with water. If approved, solvents such as ketones (MEK, acetone, etc.), lacquer thinner, or adhesive remover can be used. DO NOT USE SOLVENTS TO CLEAN ADHESIVE FROM SKIN. Take appropriate precautions when handling flammable solvents. Solvents may damage surfaces to which they are applied. Cured material: Chip or grind off surface.

TEST CRITERIA: Anchors installed with ET-HP™ adhesive have been tested in accordance with ICC-ES's *Acceptance Criteria for Adhesive Anchors in Masonry Elements* (AC58) and *Adhesive Anchors in Concrete Elements* (AC308).

In addition, anchors installed with ET-HP adhesive have been tested in accordance with ICC-ES's Acceptance Criteria for Unreinforced Masonry Anchors (AC60).

PROPERTY	TEST METHOD	RESULTS
Consistency (77°F)	ASTM C 881	Non-sag/thixotropic paste
Heat deflection	ASTM D 648	168°F (76°C)
Bond strength (moist cure)	ASTM C 882	2,030 psi (2 days) 4,240 psi (14 days)
Water absorption	ASTM D 570	0.19% (24 hours)
Compressive yield strength	ASTM D 695	9,174 psi (24 hours) 13,390 psi (7 days)
Compressive modulus	ASTM D 695	658,200 psi (7 days)
Gel time (77°F)	ASTM C 881	10 min. – 60 gram mass 30 min – Thin film

CHEMICAL RESISTANCE Very good to excellent against distilled water, inorganic acids and alkalis. Fair to good against organic acids and alkalis, and many organic solvents. Poor against ketones. For more detailed information, visit www.strongtie.com.

ET-HP Cartridge Systems

Model No.	Capacity ounces (cubic inches)	inces Cartridge cubic Type ches)		Dispensing Tool(s)	Mixing4 Nozzle
ET-HP22	22 (39.7)	side-by-side	10	EDT22S,EDTA22P or EDTA22CKT	EMN22i
ET-HP56	56 (101.1)	side-by-side	6	EDTA56P	EMN22i or EMN50

- 1. Cartridge and bulk estimation guides are available on pages 48-51.
- Detailed information on dispensing tools, mixing nozzles and other adhesive accessories is available on pages 72–77.
- Use only appropriate Simpson Strong-Tie® mixing nozzle in accordance with Simpson Strong-Tie instructions. Modification or improper use of mixing nozzle may impair epoxy performance.

SUGGESTED SPECIFICATIONS: Anchoring adhesive shall be a two-component high solids epoxy based system supplied in manufacturer's standard side-by-side cartridge and dispensed through a static-mixing nozzle supplied by the manufacturer. Epoxy shall meet the minimum requirements of ASTM C-881 specification for Type I, II, IV, and V, Grade 3, Class B and C, except gel time, and must develop a minimum 13,390 psi compressive yield strength after 7 day cure. Epoxy must have a heat deflection temperature of a minimum 168°F (76°C). Adhesive shall be ET-HP™ adhesive from Simpson Strong-Tie, Pleasanton, CA. Anchors shall be installed per Simpson Strong-Tie instructions for ET-HP™ adhesive.

ACCESSORIES: See pages 72–77 for information on dispensing tools, mixing nozzles and other accessories.

Cure Schedule

Base IV Tempe	Cure	
°F	111110	
40	4	72 hrs.
60	16	24 hrs.
80	27	24 hrs.
100	38	12 hrs.

In-Service Temperature Sensitivity

Base M Tempe		Percent Allowable	
°F	°C	Load	
40	4	100%	
70	21	100%	
110	43	100%	
135	57	85%	
150	66	69%	
180	82	58%	

- Refer to temperature-sensitivity chart for allowable bond strength reduction for temperature. See page 225 for more information.
- Percent allowable load may be linearly interpolated for intermediate base material temperatures.
- 3. °C = (°F-32) / 1.8

ET-HP Epoxy Anchor Installation Information and Additional Data for Threaded Rod and Rebar in Normal-Weight Concrete¹

Characteristic		Symbol	Units	Nominal Anchor Diameter (in.) / Rebar Size							
Gilaracicristic		Syllibul	UIIIIS	3/8 / #3	1/2 / #4	5/8 / # 5	3/4 / #6	⅓ / # 7	1 / #8	11/4 / #10	
		Ins	stallation In	formation							
Drill Bit Diameter		d _{hole}	in.	1/2	5/8	3/4	7/8	1	1 1/8	1%	
Maximum Tightening Torque	Maximum Tightening Torque				20	30	45	60	80	125	
Permitted Embedment Depth Range ²	Minimum	h _{ef}	in.	23/8	23/4	31/8	31/2	33/4	4	5	
Fermitted Embedment Depth Hange-	Maximum	h _{ef}	in.	41/2	6	71/2	9	101/2	12	15	
Minimum Concrete Thickness		h _{min}	in.				h _{ef} + 5d _o				
Critical Edge Distance		Cac	in.		_/////		2.75 x h _{ef}				
Minimum Edge Distance		Cmin	in.	1 3/4						2¾	
Minimum Anchor Spacing		S _{min}	in.			(3			6	

- 1. The information presented in this table is to be used in conjunction with the design criteria of ICC-ES AC308.
- $2. \ \ Minimum \ and \ maximum \ embedment \ depths \ are \ are \ listed \ in \ accordance \ with \ ICC-ES \ AC308 \ requirements.$

ET-HP™ (formerly ET) Anchoring Adhesive

ET-HP Epoxy Anchor Tension Strength Design Data for Threaded Rod and Rebar in Normal-Weight Concrete^{1,11}

* See page 13 for an explanation of the load table icons

	Characteristic	Cumbal	Units	Nominal Anchor Diameter (in.)							
	Characteristic	Symbol	UIIIIS	3/8 / #3	1/2 / #4	5% / #5	3/4 / #6	½ / # 7	1 / #8	11/4 / #10	
	Steel S	Strength in	Tensio	n							
	Minimum Tensile Stress Area	Ase	in ²	0.078	0.142	0.226	0.334	0.462	0.606	0.969	
	Tension Resistance of Steel - ASTM A193, Grade B7		. 100	9,750	17,750	28,250	41,750	57,750	75,750	121,125	
Threaded	- ASTM F1554, Grade 36			4,525	8,235	13,110	19,370	26,795	35,150	56,200	
Rod	- Type 410 Stainless (ASTM A193, Grade B6)	N _{sa}	lb.	8,580	15,620	24,860	36,740	50,820	66,660	106,590	
riou	- Type 304 and 316 Stainless (ASTM A193, Grade B8 and B8M)	_		4,445	8,095	12,880	19,040	26,335	34,540	55,235	
	Strength Reduction Factor - Steel Failure	φ		1			0.758	,			
	Minimum Tensile Stress Area	Ase	in ²	0.11	0.20	0.31	0.44	0.60	0.79	1.23	
Rebar	Tension Resistance of Steel – Rebar (ASTM A615, Grade 60)	N _{sa}	lb.	9,900	18,000	27,900	39,600	54,000	71,100	110,700	
	Strength Reduction Factor – Steel Failure	φ	_				0.658	•			
	Concrete Breakout Strength	in Tensio	n (2,500	O psi ≤ f' _c	≤ 8,000 p	si)					
Effectiveness Fa	ctor - Uncracked Concrete	k _{uncr}	k _{uncr} — 24								
Strength Reduct	ion Factor - Breakout Failure	φ	2.270								
	Bond Strength in Ten	sion (2,50	00 psi ≤	f' _c ≤ 8,00	0 psi)						
Temp. Range 1 for Uncracked Concrete ^{2,4,5}	Characteristic Bond Strength ⁷	$ au_{k,uncr}$	psi	1,590	1,535	1,485	1,435	1,380	1,330	1,225	
Temp. Range 2 for Uncracked Concrete ^{3,4,5}	Characteristic Bond Strength ^{6,7}	Tk,uncr	psi	435	420	405	395	380	365	335	
	Bond Strength in Tension – Bond Strength Redu	ction Fact	ors for	Periodic o	or Continu	ous Speci		tion			
Strength Reduction Factor - Dry Concrete ϕ_{dry} — 0.65°											
Strength Reduct	ion Factor - Water-saturated Concrete	φ _{sat}	_				0.459				

- The information presented in this table is to be used in conjunction with the design criteria of ICC-ES AC308, except as modified below.
- 2. Temperature Range 1: Maximum short-term temperature of 110°F (43°C). Maximum long-term temperature of 75°F (24°C).
- Temperature Range 2: Maximum short-term temperature of 150°F (66°C). Maximum long-term temperature of 110°F (43°C).
- 4. Short-term concrete temperatures are those that occur over short intervals (diurnal cycling).
- Long-term concrete temperature are constant temperatures over a significant time period.
- 6. For anchors that only resist wind or seismic loads, bond strengths may be multiplied by 2.25.
- 7. For anchors installed in overhead and subjected to tension resulting from sustained loading, multiply the value calculated for N_a according to ICC-ES AC308 by 0.75.
- The value of φ applies when the load combinations of ACI 318 Section 9.2 are used. If the load combinations of ACI 318 Appendix C are used, refer to Section D.4.5 to determine the appropriate value of φ.

- 9. The value of φ applies when both the load combinations of ACI 318 Section 9.2 are used and the requirements of Section D.4.4(c) for Condition B are met. If the load combinations of ACI 318 Appendix C are used, refer to Section D.4.5 to determine the appropriate value of φ .
- 10. The value of φ applies when both the load combinations of ACI 318 Section 9.2 are used and the requirements of Section D.4.4(c) for Condition B are met. If the load combinations of ACI 318 Section 9.2 are used and the requirements of Section D.4.4(c) for Condition A are met, refer to Section D.4.4 to determine the appropriate value of φ . If the load combinations of ACI 318 Appendix C are used, refer to Section D.4.5 to determine the appropriate value of φ .
- 11. Sand-lightweight and all-lightweight concrete are beyond the scope of this table.

ET-HP™ (formerly ET) Anchoring Adhesive

ET-HP™ Epoxy Anchor Shear Strength Design Data for Threaded Rod and Rebar in Normal-Weight Concrete^{1,5}

	Characteristic	Cumbal	Units		Nominal	Anchor I	Diamete	r (in.) / F	Rebar Si	ze
	Characteristic	Symbol	UIIIIS	3/8 / #3	1/2 / #4	5% / #5	3/4 / #6	½ / # 7	1 / #8	11/4 / #10
	Steel Strengt	yth in Shear								
	Minimum Shear Stress Area	Ase	in²	0.078	0.142	0.226	0.334	0.462	0.606	0.969
	Shear Resistance of Steel - ASTM A193, Grade B7			4,875	10,650	16,950	25,050	34,650	45,450	72,675
Threaded Rod	- ASTM F1554, Grade 36	1/	lb.	2,260	4,940	7,865	11,625	16,080	21,090	33,720
Tilleaueu nou	- Type 410 Stainless (ASTM A193, Grade B6)	$-V_{sa}$	ID.	4,290	9,370	14,910	22,040	30,490	40,000	63,955
	- Type 304 and 316 Stainless (ASTM A193, Grade B8 and B8M)			2,225	4,855	7,730	11,420	15,800	20,725	33,140
	Strength Reduction Factor - Steel Failure									
	Minimum Shear Stress Area	A _{se}	in ²	0.11	0.20	0.31	0.44	0.60	0.79	1.23
Rebar	Shear Resistance of Steel – Rebar (ASTM A615, Grade 60)	V _{sa}	lb.	4,950	10,800	16,740	23,760	32,400	42,660	66,420
	Strength Reduction Factor – Steel Failure	φ	_				0.602			
	Concrete Breakout S	Strength i	n Shear							
Outside Diame	ter of Anchor	do	in.	0.375	0.500	0.625	0.750	0.875	1.000	1.250
Load Bearing L	ength of Anchor in Shear	ℓ_{e}	in.	h _{ef}						
Strength Redu	ction Factor – Breakout Failure	φ	_				0.703			
Concrete Pryout Strength in Shear										
Coefficient for	Pryout Strength	k _{cp}	_				2.0			
Strength Redu	ction Factor – Pryout Failure	φ					0.704			

- The information presented in this table is to be used in conjunction with the design criteria of ICC-ES AC308, except as modified below.
- The value of ϕ applies when the load combinations of ACI 318 Section 9.2 are used. If the load combinations of ACI 318 Appendix C are used, refer to Section D.4.5 to determine the appropriate value of ϕ .
- The value of ϕ applies when both the load combinations of ACI 318 Section 9.2 are used and the requirements of Section D.4.4(c) for Condition B are met. If the load combinations of ACI 318 Section 9.2 are used and the requirements of Section D.4.4(c) for Condition A are met, refer to Section D.4.4 to determine the appropriate value of \$\phi\$. If the load combinations of ACI 318 Appendix C are used, refer to Section D.4.5 to determine the appropriate value of φ.
- 4. The value of ϕ applies when both the load combinations of ACI 318 Section 9.2 are used and the requirements of Section D.4.4(c) for Condition B are met. If the load combinations of ACI 318 Appendix C are used, refer to Section D.4.5 to determine the appropriate value of φ.
- 5. Sand-lightweight and all-lightweight concrete are beyond the scope of this table.

Tension Loads for Threaded Rod Anchors in Normal-Weight Concrete

See page 13 for an explanation of the load table icons

Rod Dia.	Drill Bit	Embed. Depth	Critical Edge	Critical Spacing		Tension Load I on Bond Sti		Tension Load Based on Steel Strength		
in. (mm)	Dia.	in. (mm)	Dist.	Dist.		f' _c ≥ 2000 ps 8 MPa) Cond		F1554 Grade 36	A193 GR B7	F593 304SS
()		()	(mm)	(mm)	Ultimate lbs. (kN)	Std. Dev. Ibs. (kN)	Allowable lbs. (kN)	Allowable Allowable lbs. (kN)		Allowable lbs. (kN)
3/8 (9.5)	1/2	3½ (89)	5 1⁄4 (133)	14 (356)	8,777 (39.0)	324 (1.4)	2,195 (9.8)	2,105 (9.4)	4,535 (20.2)	3,630 (16.1)
1/2 (12.7)	5/8	4½ (108)	6 % (162)	17 (432)	15,368 (68.4)	605 (2.7)	3,840 (17.1)	3,750 (16.7)	8,080 (35.9)	6,470 (28.8)
5/8 (15.9)	3/4	5 (127)	7½ (191)	20 (508)	22,877 (101.8)	718 (3.2)	5,720 (25.4)	5,875 (26.1)	12,660 (56.3)	10,120 (45.0)
3/4 (19.1)	7/8	6¾ (171)	101/8 (257)	27 (686)	35,459 (157.7)	4,940 (22.0)	8,865 (39.4)	8,460 (37.6)	18,230 (81.1)	12,400 (55.2)
7/8 (22.2)	1	7 % (197)	11 % (295)	31 (787)	43,596 (193.9)	1,130 (5.0)	10,900 (48.5)	11,500 (51.2)	24,785 (110.2)	16,860 (75.0)
1 (25.4)	11/8	9 (229)	13½ (343)	36 (914)	47,333 (210.5)	1,243 (5.5)	11,835 (52.6)	15,025 (66.8)	32,380 (144.0)	22,020 (97.9)
1 1/8 (28.6)	11/4	101/8 (257)	15 1/4 (387)	40½ (1029)	61,840 (275.1)	_	15,460 (68.8)	19,025 (84.6)	41,000 (182.4)	27,880 (124.0)
1½ (31.8)	1 3/8	11 1/4 (286)	16 % (429)	45 (1143)	78,748 (350.3)	4,738 (21.1)	19,685 (87.6)	23,490 (104.5)	50,620 (225.2)	34,420 (153.1)

- 1. Allowable load must the lesser of the bond or steel strength. The allowable loads listed under allowable bond are based on a
- safety factor of 4.0. 3. Refer to allowable load-adjustment factors for spacing and edge
- distance on pages 44 and 45.
- 4. Refer to in-service temperature sensitivity chart for allowable load adjustment for temperature.
- 5. Anchors are permitted to be used within fire-resistive construction, provided the anchors resist wind or seismic loads only. For use in fire-resistive construction, the anchors can also be permitted to be used to resist gravity loads, provided special consideration has been given to fire-exposure conditions.
- 6. Anchors are not permitted to resist tension forces in overhead or wall installations unless proper consideration is given to fireexposure and elevated-temperature conditions.

ET-HP™ (formerly ET) Anchoring Adhesive

Shear Loads for Threaded Rod Anchors in Normal-Weight Concrete

See page 13 for an explanation of the load table icons

Rod Dia.	Drill Bit	Embed. Depth	Critical Edge	Critical Spacing		ar Load Base ete Edge Dis		Shear Load Based on Steel Strength			
in. (mm)	Dia.	in. (mm)	Dist.	Dist.	f' _c ≥ 2000 psi (13.8 MPa) Concrete			F1554 Grade 36	A193 GR B7	F593 304SS	
()		()	(mm)	(mm)			Allowable lbs. (kN)	Allowable lbs. (kN)	Allowable lbs. (kN)		
3/8 (9.5)	1/2	3½ (89)	5 1⁄4 (133)	5 ½ (133)	7,615 (33.9)	591 (2.6)	1,905 (8.5)	1,085 (4.8)	2,340 (10.4)	1,870 (8.3)	
1/2 (12.7)	5/8	4½ (108)	6 % (162)	63/8 (162)	11,273 (50.1)	1,502 (6.7)	2,820 (12.5)	1,930 (8.6)	4,160 (18.5)	3,330 (14.8)	
5/8 (15.9)	3/4	5 (127)	7½ (191)	7½ (191)	19,559 (87.0)	1,289 (5.7)	4,890 (21.8)	3,025 (13.5)	6,520 (29.0)	5,220 (23.2)	
3/4 (19.1)	7/8	6¾ (171)	101/8 (257)	101/8 (257)	27,696 (123.2)	2,263 (10.1)	6,925 (30.8)	4,360 (19.4)	9,390 (41.8)	6,385 (28.4)	
7/8 (22.2)	1	7 3/4 (197)	11 5/8 (295)	11 5/8 (295)	_	_	6,925 (30.8)	5,925 (26.4)	12,770 (56.8)	8,685 (38.6)	
1 (25.4)	11/8	9 (229)	13½ (343)	13½ (343)	53,960 (240.0)	3,821 (17.0)	13,490 (60.0)	7,740 (34.4)	16,680 (74.2)	11,345 (50.5)	
1 1/8 (28.6)	11/4	101/8 (257)	15 1⁄4 (387)	151/4 (387)	59,280 (263.7)	_	14,820 (65.9)	9,800 (43.6)	21,125 (94.0)	14,365 (63.9)	
1 ½ (31.8)	1 3/8	11 1/4 (286)	16 % (429)	16 % (429)	64,572 (287.2)	3,503 (15.6)	16,145 (71.8)	12,100 (53.8)	26,075 (116.0)	17,730 (78.9)	

- 1. Allowable load must be the lesser of the load based on concrete edge distance or steel strength.
- 2. The allowable loads based on concrete edge distance are based on a safety factor of 4.0.
- 3. Refer to allowable load-adjustment factors for spacing and edge distance on pages 45 and 46.
- 4. Refer to in-service temperature sensitivity chart for allowable load adjustment for temperature.
- 5. Anchors are permitted to be used within fire-resistive construction, provided the anchors resist wind or seismic loads only. For use in fire-resistive construction, the anchors can also be permitted to be used to resist gravity loads, provided special consideration has been given to fire-exposure conditions.

Tension Loads for Threaded Rod Anchors in Normal-Weight Concrete Stemwall

Rod Dia.	Drill Bit Dia.	Embed. Depth	Stemwall Width	Min. Edge	Min. End		on Load Ba ond Streng		Tension Load Based on Steel Strength	
in. (mm)	in.	in. (mm)	in. (mm)	Dist. in.	Dist.		' _c ≥ 2000 p B MPa) Cor	F1554 Grade 36		
		()	()	(mm)	(mm)	Ultimate lbs. (kN)	Std. Dev. Ibs. (kN)	Allowable lbs. (kN)	Allowable lbs. (kN)	
5/8 (15.9)	3/4	9½ (241.3)	6 (152.4)	1 3/4 (44.5)	5 (127.0)	10,720 (47.7)	1,559 (6.9)	2,680 (11.9)	5,875 (26.1)	
5/8 (15.9)	3/4	12 (304.8)	6 (152.4)	1 ³ / ₄ (44.5)	5 (127.0)	16,150 (71.8)	260 (1.2)	4,040 (18.0)	5,875 (26.1)	
7/8 (22.2)	1	12½ (317.5)	8 (203.2)	1 ³ / ₄ (44.5)	5 (127.0)	17,000 (75.6)	303 (1.3)	4,250 (18.9)	11,500 (51.2)	

23,340

(103.8)

762

(3.4)

5,835

(26.0)

7/8 (22.2) 1. Allowable load must be the lesser of the bond or steel strength.

151/2

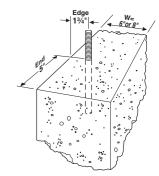
(393.7)

2. The allowable loads listed under allowable bond are based on a safety factor of 4.0.

(203.2)

3. Refer to in-service temperature sensitivity chart for allowable load adjustment for temperature.

(44.5)


(127.0)

4. Anchors are permitted to be used within fire-resistive construction, provided the anchors resist wind or seismic loads only. For use in fire-resistive construction, the anchors can also be permitted to be used to resist gravity loads, provided special consideration has been given to fire-exposure conditions

11,500

(51.2)

Edge and end distances for threaded rod in concrete foundation stemwall corner installation

ET-HP™ (formerly ET) Anchoring Adhesive

Tension Loads for Rebar Dowels in Normal-Weight Concrete

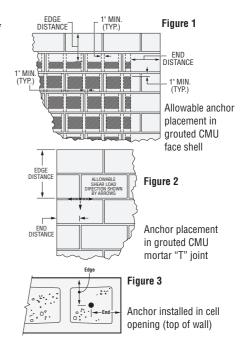
* See page 13 for
an explanation of the
load table icons

Rebar Size	Drill Bit	Embed.	Critical	Critical		Tensio		Tension Load Based on Steel Strength			
No. (mm)	Dia.	Depth in. (mm)	Edge Dist. in.	Spacing Dist. in.		f' _c ≥ 2000 p .8 MPa) Cor			f' _c ≥ 4000 p: .6 MPa) Con		ASTM A615 Grade 60 Rebar
(111111)		(111111)	(mm)	(mm)	Ultimate lbs. (kN)	Std. Dev. Ibs. (kN)	Allowable lbs. (kN)	Ultimate lbs. (kN)	Std. Dev. Ibs. (kN)	Allowable lbs. (kN)	Allowable lbs. (kN)
#4	5/8	4½ (108)	6 % (162)	17 (432)	17,596 (78.3)	533 (2.4)	4,400 (19.6)	_	_	4,400 (19.6)	4,800
(12.7)	78	6 (152)	9 (229)	24 (610)	_	_	_	20,250 (90.1)	263 (1.2)	5,060 (22.5)	(21.4)
#5	3/4	5 (127)	7½ (191)	20 (508)	25,427 (113.1)	1,899 (8.4)	6,355 (28.3)	_	_	6,355 (28.3)	7,440
(15.9)	94	93/8 (238)	14 1/8 (359)	37½ (953)	_	_	_	29,510 (131.3)	2,270 (10.1)	7,375 (32.8)	(33.1)
#6	7/8	6¾ (171)	101/8 (257)	27 (686)	41,812 (186.0)	595 (2.6)	10,455 (46.5)	_	_	10,455 (46.5)	10,560
(19.1)	78	11 1/4 (286)	16 % (429)	45 (1143)	_	_	_	44,210 (196.7)	1,227 (5.5)	11,050 (49.2)	(47.0)
#7	1	7 3/4 (197)	11 5/8 (295)	31 (787)	50,241 (223.5)	2,995 (13.3)	12,560 (55.9)	_	_	12,560 (55.9)	14,400
(22.2)	'	13 1/8 (333)	19¾ (502)	52½ (1334)	_	_	_	59,325 (263.9)	3,444 (15.3)	14,830 (66.0)	(64.1)
		9 (229)	13½ (343)	36 (914)	60,145 (267.5)	5,493 (24.4)	15,035 (66.9)	_	_	15,035 (66.9)	
# 8 (25.4)	1 1/8	12 (305)	18 (457)	48 (1219)	_	_	_	_	_	18,260 (81.2)	18,960 (84.3)
		15 (381)	22½ (572)	60 (1524)	_	_	_	85,970 (382.4)	17,965 (79.9)	21,490 (95.6)	
		9 (229)	13½ (343)	36 (914)	_	_	15,035 (66.9)	_	_	15,035 (66.9)	
#9 (28.6)	11/4	13 (330)	19½ (495)	52 (1321)	_	_	_	_	_	21,310 (94.8)	24,000 (106.8)
		16 % (429)	25 % (645)	67½ (1715)	_	_	_	110,370 (491.0)	4,768 (21.2)	27,590 (122.7)	
		11 1 1 1 1 1 1 1 1 1	16 % (429)	45 (1143)	70,685 (314.4)	1,112 (4.9)	17,670 (78.6)	_	_	17,670 (78.6)	
# 10 (31.8)	1 1/2	15 (381)	22½ (572)	60 (1524)	_	_	_	_	_	23,960 (106.6)	30,480 (135.6)
		18¾ (476)	281/8 (714)	75 (1905)	_	_	_	120,976 (538.1)	6,706 (29.8)	30,245 (134.5)	
		12 % (314)	18 5/8 (473)	49½ (1257)	78,422 (348.8)	4,603 (20.5)	19,605 (87.2)	_	_	19,605 (87.2)	
#11 (34.9)	15/8	16½ (419)	24 3/4 (629)	66 (1676)	_	_	_	_	_	28,605 (127.2)	37,440 (166.5)
		20	31 (787)	82½ (2096)	_	_	_	150,415 (669.1)	8,287 (36.9)	37,605 (167.3)	
# 14 (44.5)	2	15¾ (400)	23 % (600)	63 (1600)	91,518 (407.1)	3,797 (16.9)	22,880 (101.8)	_	_	22,880 (101.8)	54,000 (240.2)

- 1. Allowable load must be the lesser of the bond or steel strength.
- 2. The allowable loads listed under allowable bond are based on a safety factor of 4.0.
- $3. \ \ Refer to \ allowable \ load-adjustment factors for spacing \ and \ edge \ distance \ on \ pages \ 45 \ and \ 46.$
- 4. Refer to in-service temperature sensitivity chart for allowable load adjustment for temperature.
- Anchors are permitted to be used within fire-resistive construction, provided the anchors resist wind
 or seismic loads only. For use in fire-resistive construction, the anchors can also be permitted to be
 used to resist gravity loads, provided special consideration has been given to fire-exposure conditions.
- Anchors are not permitted to resist tension forces in overhead or wall installations unless proper consideration is given to fire-exposure and elevated-temperature conditions.

ET-HP™ (formerly ET) Anchoring Adhesive

Shear Loads for Rebar Dowels in Normal-Weight Concrete


Rebar Size	Drill Bit Dia.	Embed. Depth	Critical Edge	Critical Spacing		ar Load Base ete Edge Dis		Shear Load Based on Steel Strength
No. (mm)	in.	in. (mm)	Dist.	Dist.		f' _c ≥ 2500 psi 2 MPa) Conc		ASTM A615 Grade 60 Rebar
()		()	(mm)	(mm)	Ultimate lbs. (kN)	Std. Dev. Ibs. (kN)	Allow. lbs. (kN)	Allowable lbs. (kN)
# 4 (12.7)	5/8	4½ (108)	8 (203)	6 % (162)	13,564 (60.3)	971 (4.3)	3,390 (15.1)	3,060 (13.6)
#5 (15.9)	3/4	5 (127)	10 (254)	7½ (191)	20,914 (93.0)	3,034 (13.5)	5,230 (23.3)	4,740 (21.1)
# 6 (19.1)	7/8	6 3/4 (171)	12 (305)	10 1/8 (257)	30,148 (134.1)	1,322 (5.9)	7,535 (33.5)	6,730 (29.9)
#7 (22.2)	1	7 3/4 (197)	14 (356)	11 5/8 (295)	39,838 (177.2)	1,854 (8.2)	9,960 (44.3)	9,180 (40.8)
#8 (25.4)	11/8	9 (229)	16 (406)	13½ (343)	53,090 (236.2)	3,562 (15.8)	13,270 (59.0)	12,085 (53.8)
#9 (28.7)	11/4	10 1/8 (257)	18 (457)	15 1/4 (387)	63,818 (148.7)	3,671 (16.3)	15,955 (71.0)	15,300 (68.1)
#10 (32.3)	1 1/2	11 1/4 (286)	20 (508)	16 % (429)	82,782 (368.2)	2,245 (10.0)	20,695 (92.1)	19,430 (86.4)
#11 (35.8)	1 5/8	12	22 (559)	18 5/8 (473)	96,056 (427.3)	3,671 (16.3)	24,015 (106.8)	23,865 (106.2)
#14 (43.0)	2	12 % (314)	22 (559)	18 5/8 (473)	_	_	24,015 (106.8)	34,425 (153.1)

- Allowable load must be the lesser of the load based on concrete edge distance or steel strength.
- 2. The allowable loads based on concrete edge distance are based on a safety factor of 4.0.
- 3. Refer to allowable load-adjustment factors for spacing and edge distance on pages 45 and 46.
- Refer to in-service temperature sensitivity chart for allowable load adjustment for temperature.
- Anchors are permitted to be used within fire-resistive construction, provided the anchors resist wind or seismic loads only. For use in fire-resistive construction, the anchors can also be permitted to be used to resist gravity loads, provided special consideration has been given to fire-exposure conditions.

Tension and Shear Loads for Threaded Rod Anchors in 6 and 8-inch Normal-Weight Grout-Filled CMU

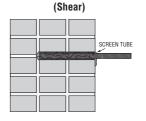
					I IIICU OIV		(C) (C)		
Rod Dia.	Drill Bit	Embed. Depth ⁸	Min. Edge	Min. End	Min. Spacing		nd 8-inch Gr e Loads Bas		
in.	Dia.	in.	Dist.	Dist.	Dist.	Ten	sion	Sh	ear
(mm)	in.	(mm)	in. (mm)	in. (mm)	in. (mm)	Ultimate lbs. (kN)	Allowable lbs. (kN)	Ultimate lbs. (kN)	Allowable lbs. (kN)
			Ancho	r Installe	d in Face	Shell (See F	igure 1)		
3/8 (9.5)	7/16	31/2	12 (305)	4 (102)	14 (356)	6,489 (28.9)	1,300 (5.8)	5,231 (23.3)	1,045 (4.6)
	716	(89)	12 (305)	12 (305)	14 (356)	7,247 (32.2)	1,450 (6.4)	6,738 (30.0)	1,350 (6.0)
1/2	0/	41/4	12 (305)	4 (102)	17 (432)	8,646 (38.5)	1,730 (7.7)	5,705 (25.4)	1,140 (5.1)
(12.7)	9/16	(108)	12 (305)	12 (305)	17 (432)	8,975 (39.9)	1,795 (8.0)	10,879 (48.4)	2,175 (9.7)
		43/4	12 (305)	4 (102)	19 (483)	10,213 (45.4)	2,045 (9.1)	5,973 (26.6)	1,195 (5.3)
5/8 (15.9)	3/4	(121)	12 (305)	12 (305)	19 (483)	11,290 (50.2)	2,260 (10.1)	13,027 (57.9)	2,605 (11.6)
		6 (152)	4 (102)	45 /8 (117)	24 (610)	4,905 (21.8)	980 (4.4)	4,766 (21.2)	955 (4.2)
3/4	7/8	63/4	12 (305)	4 (102)	27 (686)	11,976 (53.3)	2,395 (10.7)	_	_
(19.1)	78	(171)	12 (305)	12 (305)	27 (686)	_	_	19,141 (85.1)	3,830 (17.0)
			Anchor I	ıstalled i	n Mortar "	T" Joint (Se	e Figure 2)		
3/8 (9.5)	7⁄16	3½ (89)	8 (203)	8 (203)	14 (356)	7,646 (34.0)	1,530 (6.8)	5,507 (24.5)	1,100 (4.9)
1/2 (12.7)	9⁄16	4½ (108)	8 (203)	8 (203)	17 (432)	9,529 (42.4)	1,905 (8.5)	8,003 (35.6)	1,600 (7.1)
5 / 8 (15.9)	3/4	4 ³ ⁄ ₄ (121)	8 (203)	8 (203)	19 (483)	9,955 (44.3)	1,990 (8.9)	9,529 (42.4)	1,905 (8.5)
3/4 (19.1)	7/8	6 3⁄4 (171)	16 (406)	8 (203)	27 (686)	_	_	7,238 (32.2)	1,450 (6.4)
		Anch		ed in Cel	l Opening	(Top of Wal) (See Figur		
5/8 (15.9)	3/4	6 (152)	4 (102)	4 5/8 (117)	24 (610)	6,721 (29.9)	1,345 (6.0)	4,833 (21.5)	965 (4.3)
3/4 (19.1)	7/8	6 (152)	4 (102)	4 5/8 (117)	24 (610)	_	1,345 (6.0)	_	965 (4.3)

- Threaded rods must comply with ASTM F1554 Grade 36 minimum.
- Values for 6- and 8-inch wide concrete masonry units (CMU) with a minimum specified compressive strength of masonry, f'_m, at 28 days is 1500 psi.
- 3. Embedment depth is measured from the outside face of the concrete masonry unit for installations through a face shell.
- 4. Allowable loads may not be increased for short-term loading due to wind or seismic forces.
- Refer to in-service temperature sensitivity chart for allowable load adjustment for temperature.
- The tabulated allowable loads are based on a safety factor of 5.0 for installations under the IBC and IRC.
 Anchors must be spaced a minimum distance of four times the
- anchor embedment.

 8. For embedment depths of 6 3/4", 8-inch-wide normal-weight grout-filled CMU block must be used.

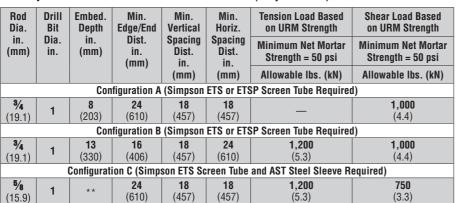
ET-HP™ (formerly ET) Anchoring Adhesive

Tension and Shear Loads for Threaded Rod Anchors in Lightweight, Medium-Weight and Normal-Weight Hollow CMU


	·9,	ou.u	ngint and ito	ag.		(200	524 524					
Rod Dia.	Drill Bit Dia.	Embed. Depth	Min. Edge Dist.	Min. End Dist.	6 and 8-inch Hollow CMU Allowable Loads Based on CMU Strength							
ומ. in.					Ten	sion	Shear					
(mm)	(in.)	In.	In.	IN.	Ultimate	Allowable	Ultimate	Allowable				
(111111)	(111.)	(mm)	(mm)	(mm)	lbs. (kN)	lbs. (kN)	lbs. (kN)	lbs. (kN)				
		Anchor	Installed in Fa	ce Shell w/E	. ,	. ,	. ,					
1/2	44/	3	4	45/8	1.400	280	1.326	265				
(12.7)	11/16	(76.2)	(101.6)	(117.5)	(6.2)	(1.2)	(5.9)	(1.2)				
3/4	4	3	4	4 5/8		280		265				
(19.1)	1	(76.2)	(101.6)	(117.5)	_	(1.2)	_	(1.2)				

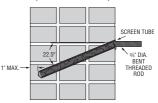
- 1. Threaded rods must comply with ASTM F1554 Grade 36 minimum.
- Values for 6- and 8-inch wide concrete masonry units (CMU) with a minimum specified compressive strength of masonry, f'_m, at 28 days is 1500 psi.
- 3. Embedment depth is measured from the outside face of the concrete masonry unit for installations through a face shell.
- 4. Allowable loads may not be increased for short-term loading due to wind or seismic forces.
- 5. Refer to in-service temperature sensitivity chart for allowable load adjustment for temperature.
- 6. The tabulated allowable loads are based on a safety factor of 5.0 for installations under the IBC and IRC.
- 7. Anchors must be spaced a minimum distance of four times the anchor embedment.
- 8. Set drill to rotation-only mode when drilling into hollow CMU.

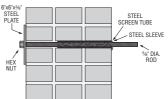
Placement in Hollow CMU


Figure 1

See page 13 for an explanation of the load table icons

Configuration A


Tension and Shear Loads for Installations in Unreinforced Brick Masonry Walls Minimum URM Wall Thickness is 13" (3 wythes thick)


- Threaded rods must comply with ASTM F1554 Grade 36 minimum.
- All holes are drilled with a 1" diameter carbide-tipped drill bit with the drill set in the rotation-only mode.
- The unreinforced brick walls must have a minimum thickness of 13 inches (three wythes of brick).

 The allowable lead is applicable only where in place.
- The allowable load is applicable only where in-place shear tests indicate minimum net mortar strength of 50 psi.
- The allowable load for Configuration B and C anchors subjected to a combined tension and shear load is determined by assuming a straight-line relationship between allowable tension and shear.
- 6. The anchors installed in unreinforced brick walls are limited to resisting seismic or wind forces only.
- Configuration A has a straight threaded rod or rebar embedded 8 inches into the wall with a 3½2" diameter by 8-inch long screen tube (part # ETS758 or ETS758P). This configuration is designed to resist shear loads only
- 8. Configuration B has a ¾" threaded rod bent and installed at a 22.5-degree angle and installed 13 inches into the wall, to within 1-inch (maximum) of the exterior wall surface. This configuration is designed to resist tension and shear loads. The pre-bent threaded rod is installed with a ³¹/₂₂" diameter by 13-inch long screen tube (part # ETS7513 or ETS7513P).
- 9. Configuration C is designed to resist tension and shear forces. It consists of a 5/8" diameter, ASTM F1554 Grade 36 threaded rod and an 8" long sleeve (part # AST800) and a 3½2" diameter by 8-inch long screen tube (part # ETS758). The steel sleeve has a plastic plug in one end. A 6" by 6" by 3/8" thick ASTM A 36 steel plate is located on the back face of the wall.
- Special inspection requirements are determined by local jurisdiction and must be confirmed by the local building official.
- 11. Refer to in-service temperature sensitivity chart for allowable load adjustment for temperature.

Configuration B (Tension & Shear)

Configuration C (Tension & Shear)

Installation Instructions for Configuration C:

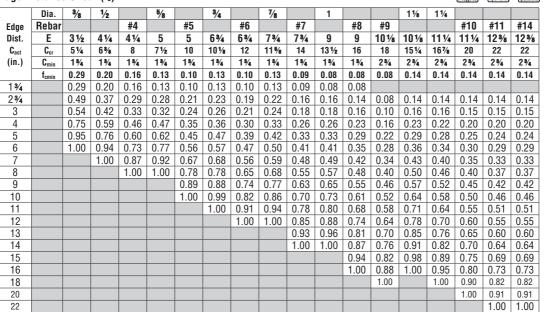
- Drill hole perpendicular to the wall to a depth of 8" with a 1" diameter carbidetipped drill bit (rotation only mode).
- 2. Clean hole with oil-free compressed air and a nylon brush.
- 3. Fill 8" steel screen tube with mixed adhesive and insert into hole.
- 4. Insert steel sleeve slowly into screen tube (adhesive will displace).
- 5. Allow adhesive to cure (see cure schedule).
- 6. Drill through plastic plug in (inside) end of steel sleeve with 5%" bit.
- Drill completely through the wall with 5/6" carbide tipped concrete drill bit (rotation mode only).
- 8. Insert 5%" rod through hole and attach metal plate and nut.

ET-HP™ (formerly ET) Technical Information

Load-Adjustment Factors for ET-HP™ Adhesive in Normal-Weight Concrete: Edge Distance, Tension and Shear Loads How to use these charts:

- 1. The following tables are for reduced edge distance.
- 2. Locate the anchor size to be used for either a tension and/or shear load application.
- 3. Locate the embedment (E) at which the anchor is to be installed.
- 4. Locate the edge distance (Cact) at which the anchor is to be installed.
- 5. The load-adjustment factor (fc) is the intersection of the row and column.
- 6. Multiply the allowable load by the applicable load-adjustment factor.
- 7. Reduction factors for multiple edges are multiplied together.
- 8. Adjustment factors do not apply to allowable steel strength values.
- Adjustment factors are to be applied to allowable tension load based on bond strength values or allowable Shear Load Based on Concrete Edge Distance values only.

Edge Distance Tension (fc)



																				(B)Control
	Dia.	3/8	1/2		5/8		3/4		7/8		1				11/8	11/4				
Edge	Rebar		#	4	#	5	#	6	#	7	#	8	#	9		#1	0	#*	11	#14
Dist.	E	31/2	41/4	6	5	93/8	63/4	111/4	73/4	131/8	9	15	9	161/8	101/8	111/4	18¾	12 %	20%	15¾
Cact	Ccr	51/4	63/8	9	71/2	141/8	101/8	16 1/8	11%	193/4	131/2	221/2	131/2	25%	151/4	161/8	281/8	18%	31	23%
(in.)	C _{min}	13/4	13/4	13/4	13/4	13/4	13/4	13/4	13/4	1%	13/4	1%	2¾	23/4	23/4	23/4	23/4	23/4	23/4	23/4
	f _{cmin}	0.50	0.50	0.59	0.50	0.64	0.50	0.57	0.50	0.52	0.50	0.47	0.50	0.47	0.58	0.58	0.51	0.58	0.51	0.58
13/4		0.50	0.50	0.59	0.50	0.64	0.50	0.57	0.50	0.52	0.50	0.47								
23/4		0.64	0.61	0.65	0.59	0.67	0.56	0.60	0.55	0.55	0.54	0.50	0.50	0.47	0.58	0.58	0.51	0.58	0.51	0.58
3		0.68	0.64	0.66	0.61	0.68	0.57	0.61	0.56	0.55	0.55	0.50	0.51	0.48	0.59	0.59	0.51	0.59	0.51	0.59
4		0.82	0.74	0.72	0.70	0.71	0.63	0.63	0.61	0.58	0.60	0.53	0.56	0.50	0.62	0.62	0.53	0.61	0.53	0.61
5		0.96	0.85	0.77	0.78	0.73	0.69	0.66	0.66	0.61	0.64	0.55	0.60	0.52	0.66	0.65	0.55	0.64	0.55	0.63
6		1.00	0.96	0.83	0.87	0.76	0.75	0.69	0.72	0.63	0.68	0.58	0.65	0.55	0.69	0.68	0.57	0.67	0.57	0.65
7			1.00	0.89	0.96	0.79	0.81	0.72	0.77	0.66	0.72	0.60	0.70	0.57	0.72	0.71	0.59	0.69	0.58	0.67
8				0.94	1.00	0.82	0.87	0.75	0.82	0.69	0.77	0.63	0.74	0.59	0.76	0.74	0.61	0.72	0.60	0.69
9				1.00		0.85	0.93	0.78	0.87	0.71	0.81	0.66	0.79	0.62	0.79	0.77	0.63	0.75	0.62	0.71
10						0.88	0.99	0.80	0.92	0.74	0.85	0.68	0.84	0.64	0.82	0.80	0.65	0.77	0.64	0.73
12						0.94	1.00	0.86	1.00	0.79	0.94	0.73	0.93	0.69	0.89	0.86	0.69	0.82	0.67	0.77
14						1.00		0.92		0.85	1.00	0.78	1.00	0.73	0.96	0.91	0.73	0.88	0.71	0.81
16								0.98		0.90		0.83		0.78	1.00	0.97	0.77	0.93	0.74	0.85
18								1.00		0.95		0.89		0.83		1.00	0.80	0.98	0.77	0.89
20										1.00		0.94		0.87			0.84	1.00	0.81	0.93
22												0.99		0.92			0.88		0.84	0.97
24												1.00		0.97			0.92		0.88	1.00
26														1.00			0.96		0.91	
28																	1.00		0.95	
30																			0.98	
32																			1.00	

See notes below.

Edge Distance Shear (fc)

- 1. E = Embedment depth (inches).
- 2. C_{act} = actual edge distance at which anchor is installed (inches).
- 3. C_{cr} = critical edge distance for 100% load (inches).
- 4. C_{min} = minimum edge distance for reduced load (inches).
- 5. f_c = adjustment factor for allowable load at actual edge distance.
- 6. f_{ccr} = adjustment factor for allowable load at critical edge distance. f_{ccr} is always = 1.00.
- 7. f_{cmin} = adjustment factor for allowable load at minimum edge distance.
- 8. $f_c = f_{cmin} + [(1 f_{cmin}) (C_{act} C_{min}) / (C_{cr} C_{min})].$

ET-HP™ (formerly ET) Technical Information

Load-Adjustment Factors for ET-HP™ Adhesive in Normal-Weight Concrete: Spacing, Tension and Shear Loads How to use these charts:

- 1. The following tables are for reduced spacing.
- 2. Locate the anchor size to be used for either a tension and/or shear load application.
- 3. Locate the embedment (E) at which the anchor is to be installed.
- 4. Locate the spacing (Sact) at which the anchor is to be installed.
- 5. The load-adjustment factor (fs) is the intersection of the row and column.
- 6. Multiply the allowable load by the applicable load-adjustment factor.
- 7. Reduction factors for multiple spacings are multiplied together.
- 8. Adjustment factors do not apply to allowable steel strength values.
- 9. Adjustment factors are to be applied to allowable Tension Load Based on Bond Strength values or allowable Shear Load Based on Concrete Edge Distance values only.

Spacing Tension (fs)

* See page 13 for an explanation of the load table icons

	Dia.	3/8	1/2		5/8		3/4		7/8		1				11/8	11/4				
	Rebar		#	4	#	5	#	6	#	7	#	8	#	9		#1	0	#-	11	#14
Sact	Е	31/2	41/4	6	5	9%	63/4	111/4	73/4	131/8	9	15	9	16 1/8	101/8	111/4	183/4	123/8	20 %	15¾
(in.)	Scr	14	17	24	20	371/2	27	45	31	521/2	36	60	36	671/2	40 1/2	45	75	491/2	821/2	63
	Smin	13/4	21/8	3	21/2	43/4	3%	5%	31/8	6 %	41/2	71/2	41/2	81/2	51/8	5 %	93/8	61/4	10%	71/8
	f _{smin}	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89
13/4		0.89																		
2		0.89																		
4		0.91	0.90	0.90	0.90		0.89		0.89											
6		0.93	0.92	0.91	0.91	0.89	0.90	0.89	0.90		0.90		0.90		0.89	0.89				
8		0.95	0.93	0.92	0.92	0.90	0.91	0.90	0.91	0.89	0.90	0.89	0.90		0.90	0.90		0.89		0.89
10		0.96	0.95	0.93	0.94	0.91	0.92	0.90	0.91	0.90	0.91	0.90	0.91	0.89	0.91	0.90	0.89	0.90		0.89
12		0.98	0.96	0.94	0.95	0.91	0.93	0.91	0.92	0.90	0.92	0.90	0.92	0.90	0.91	0.91	0.89	0.90	0.89	0.90
14		1.00	0.98	0.95	0.96	0.92	0.94	0.91	0.93	0.91	0.92	0.90	0.92	0.90	0.92	0.91	0.90	0.91	0.90	0.90
16			0.99	0.96	0.97	0.93	0.95	0.92	0.94	0.91	0.93	0.91	0.93	0.90	0.92	0.92	0.90	0.91	0.90	0.91
18			1.00	0.97	0.99	0.93	0.96	0.92	0.95	0.92	0.94	0.91	0.94	0.91	0.93	0.92	0.90	0.92	0.90	0.91
20				0.98	1.00	0.94	0.97	0.93	0.96	0.92	0.94	0.92	0.94	0.91	0.94	0.93	0.91	0.92	0.90	0.91
24				1.00		0.95	0.99	0.94	0.97	0.93	0.96	0.92	0.96	0.92	0.95	0.94	0.91	0.94	0.91	0.92
28						0.97	1.00	0.95	0.99	0.94	0.97	0.93	0.97	0.93	0.96	0.95	0.92	0.95	0.92	0.93
32						0.98		0.96	1.00	0.95	0.99	0.94	0.99	0.93	0.97	0.96	0.93	0.96	0.92	0.94
36						0.99		0.97		0.96	1.00	0.95	1.00	0.94	0.99	0.97	0.93	0.97	0.93	0.95
40						1.00		0.99		0.97		0.96		0.95	1.00	0.99	0.94	0.98	0.94	0.95
45								1.00		0.98		0.97		0.96		1.00	0.95	0.99	0.94	0.96
50										0.99		0.98		0.97			0.96	1.00	0.95	0.97
55										1.00		0.99		0.98			0.97		0.96	0.98
60												1.00		0.99			0.97		0.97	0.99
65														1.00			0.98		0.97	1.00
70																	0.99		0.98	
75																	1.00		0.99	
821/2																			1.00	

See Notes Below

Spacing Shear (fs)

115/8	131/2	151/4	167/8	185/s	18%
3 1/8	4 1/2	51/a	5 %	61/4	61/4
0.83	0.83	0.83	0.83	0.83	0.83
0.83					
0.85	0.84				
0.88	0.86	0.84	0.84		
0.90	0.88	0.86	0.85	0.84	0.84
0.92	0.90	0.88	0.87	0.85	0.85
N 94	0 92	0 90	0.88	0.87	በ 87

Rebar		#4	#5	#6	#7	#8	#9	#10	#11	#14
E	31/2	41/4	5	63/4	73/4	9	101/8	111/4	123/8	123/8
Scr	51/4	6%	71/2	101/8	115/8	131/2	151/4	167/8	185/8	18%
Smin	13/4	21/8	21/2	3%	3 1/8	4 1/2	51/a	5 %	61/4	61/4
f _{smin}	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83
	0.83									
	0.84									
	0.89	0.87	0.85							
	0.94	0.91	0.88	0.85	0.83					
	0.99	0.95	0.92	0.87	0.85	0.84				
	1.00	0.99	0.95	0.90	0.88	0.86	0.84	0.84		
		1.00	0.98	0.92	0.90	0.88	0.86	0.85	0.84	0.84
			1.00	0.95	0.92	0.90	0.88	0.87	0.85	0.85
				0.97	0.94	0.92	0.90	0.88	0.87	0.87
				1.00	0.96	0.93	0.91	0.90	0.88	0.88
					1.00	0.97	0.95	0.93	0.91	0.91
						1.00	0.98	0.96	0.94	0.94
							1.00	0.99	0.96	0.96
								1.00	0.99	0.99
									1.00	1.00
	S _{cr}	E 3½ S _{cr} 5¼ S _{min} 1¾ f _{smin} 0.83 0.83 0.84 0.89 0.94	E 3½ 4¼ S _{cr} 5¼ 6% S _{min} 1¾ 2½ f _{smin} 0.83 0.83 0.84 0.89 0.87 0.99 0.95 1.00 0.99	E 3½ 4¼ 5 S _{cr} 5¼ 6% 7½ S _{min} 1¾ 2½ ½½ f _{smin} 0.83 0.83 0.83 0.83 0.84 0.84 0.89 0.87 0.85 0.94 0.91 0.88 0.99 0.95 0.92 1.00 0.99 0.95 1.00 0.98	E 3½ 4¼ 5 6% S _{cr} 5¼ 6% 7½ 10¼ S _{min} 1¾ 2½ 2½ 3% 0.83 0.83 0.83 0.83 0.84 0.84 0.85 0.94 0.91 0.88 0.85 0.99 0.95 0.92 0.87 1.00 0.99 0.95 0.90 1.00 0.98 0.92 1.00 0.98 0.92 1.00 0.95 0.97	E 3½ 4¼ 5 6¾ 7½ S _{cr} 5¼ 6% 7½ 10½ 11¼ S _{min} 1¾ 2½ 2½ 3¾ 3% 0.83 0.83 0.83 0.83 0.83 0.84 0.89 0.87 0.85 0.83 0.94 0.91 0.88 0.85 0.83 0.99 0.95 0.92 0.87 0.85 1.00 0.99 0.95 0.90 0.88 1.00 0.99 0.95 0.90 0.88 1.00 0.98 0.92 0.90 1.00 0.95 0.92 0.90 0.97 0.94 0.96 0.96	E 3½ 4¼ 5 6¾ 7¾ 9 S _{cr} 5¼ 6¾ 7½ 10½ 11½ 13½ S _{min} 1¾ 2½ 2½ 3¾ 3½ 4½ f _{smin} 0.83 0.83 0.83 0.83 0.83 0.83 0.84 0.89 0.87 0.85 0.83 0.94 0.91 0.88 0.85 0.83 0.99 0.95 0.92 0.87 0.85 1.00 0.99 0.95 0.90 0.88 0.86 1.00 0.99 0.95 0.90 0.88 0.86 1.00 0.99 0.95 0.92 0.90 0.88 1.00 0.98 0.92 0.90 0.88 1.00 0.95 0.92 0.90 1.00 0.96 0.93 1.00 0.96 0.93	E 3½ 4¼ 5 6¾ 7½ 9 10⅓ S _{cr} 5¼ 6% 7½ 10% 11% 13½ 15¼ S _{min} 1¾ 2½ 2½ 3¾ 3% 4½ 5½ f _{smin} 0.83 0.83 0.83 0.83 0.83 0.83 0.83 0.84 0.89 0.87 0.85 0.83 0.83 0.83 0.94 0.91 0.88 0.85 0.83 0.85 0.84 1.00 0.99 0.95 0.92 0.87 0.85 0.84 1.00 0.99 0.95 0.90 0.88 0.86 0.84 1.00 0.98 0.92 0.90 0.88 0.86 1.00 0.98 0.92 0.90 0.88 0.86 1.00 0.95 0.92 0.90 0.88 0.86 1.00 0.95 0.92 0.90 0.93 0.91	E 3½ 4¼ 5 6¾ 7¾ 9 10½ 11¼ S _{cr} 5¼ 6% 7½ 10½ 11½ 13½ 15¼ 16% S _{min} 1¾ 2½ 2½ 3% 3% 4½ 5½ 5½ f _{smin} 0.83 0.83 0.83 0.83 0.83 0.83 0.83 0.84 0.89 0.87 0.85 0.83 0.83 0.83 0.99 0.91 0.88 0.85 0.83 0.84 0.84 1.00 0.99 0.95 0.92 0.85 0.84 0.84 0.84 1.00 0.99 0.95 0.90 0.88 0.86 0.84 0.84 1.00 0.99 0.95 0.90 0.88 0.86 0.84 0.84 1.00 0.99 0.95 0.90 0.98 0.86 0.84 0.84 1.00 0.99 0.95 0.92 0.9	E 3½ 4¼ 5 6¾ 7¼ 9 10½ 11¼ 12½ S _{cr} 5¼ 6% 7½ 10% 11% 13½ 15¼ 16% 18% S _{min} 1¾ 2½ 2½ 3% 3% 4½ 5½ 5% 6¼ f _{smin} 0.83 0.84 0.84 0.84 0.84

Dia. 3/8 1/2 5/8 3/4 1/8 1 11/8 11/4

See page 13 for an explanation of the

load table icons

- 1. E = Embedment depth (inches).
- 2. S_{act} = actual spacing distance at which anchors are installed (inches).
- 3. S_{cr} = critical spacing distance for 100% load (inches).
- 4. S_{min} = minimum spacing distance for reduced load (inches).
- 5. $f_s = adjustment factor for allowable load at$ actual spacing distance.
- 6. $f_{scr} = adjustment factor for allowable load at$ critical spacing distance. f_{scr} is always = 1.00. 7. f_{smin} = adjustment factor for allowable load at
- minimum spacing distance.
- 8. $f_s = f_{smin} + [(1 f_{smin}) (S_{act} S_{min}) / (S_{cr} S_{min})].$